On the Use of Hidden Markov Modeling and Time-frequency Features for Damage Classification in Composite Structures

نویسندگان

  • WENFAN ZHOU
  • NARAYAN KOVVALI
  • WHITNEY REYNOLDS
  • ANTONIA PAPANDREOU-SUPPAPPOLA
  • ADITI CHATTOPADHYAY
  • DOUGLAS COCHRAN
چکیده

A novel approach based on hidden Markov models (HMMs) is proposed for damage classification in composite structures. Time-frequency damage features are first extracted from the measured signals using the matching pursuit decomposition algorithm. The features are then incorporated as observation sequences to be modeled statistically by the HMMs. Once built, the HMMs are integrated very efficiently into a Bayesian framework for the classification of structural damage. Both discrete and continuous observation density HMMs are considered; continuous HMMs are shown to yield better accuracy, but at the cost of added computational complexity. A decision fusion procedure is employed to combine the local classification results at each sensor, significantly enhancing the overall classification performance. The utility of the proposed technique is demonstrated by its application to the classification of delamination damage, impact damage, and progressive tensile damage in laminated composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نهان‌کاوی صوت مبتنی بر همبستگی بین فریم و کاهش بازگشتی ویژگی

Dramatic changes in digital communication and exchange of image, audio, video and text files result in a suitable field for interpersonal transfers of hidden information. Therefore, nowadays, preserving channel security and intellectual property and access to hidden information make new fields of researches naming steganography, watermarking and steganalysis. Steganalysis as a binary classifica...

متن کامل

Simulation of Future Land Use Map of the Catchment Area, with the Integration of Cellular Automata and Markov Chain Models Based on Selection of the Best Classification Algorithm: A Case Study of Fakhrabad Basin of Mehriz, Yazd

INTRODUCTION Since the land use change affects many natural processes including soil erosion and sediment yield, floods and soil degradation and the chemical and physical properties of soil, so, different aspects of land use changes in the past and future should be considered particularly in the planning and decision-making. One of the most important applications of remote sensing is land ...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Modeling Gasoline Consumption Behaviors in Iran Based on Long Memory and Regime Change

In this study, for the first time, we model gasoline consumption behavior in Iran using the long-term memory model of the autoregressive fractionally integrated moving average and non-linear Markov-Switching regime change model. Initially, the long-term memory feature of the ARFIMA model is investigated using the data from 1927 to 2017. The results indicate that the time series studied has a lo...

متن کامل

پایش و پیش‌بینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهواره‌ای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)

Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013